Superoxide radical-generating compounds activate a predicted promoter site for paraquat-inducible genes of the Chromobacterium violaceum bacterium in a dose-dependent manner.
نویسندگان
چکیده
The purpose of the present study was to functionally evaluate the influence of superoxide radical-generating compounds on the heterologous induction of a predicted promoter region of open reading frames for paraquat-inducible genes (pqi genes) revealed during genome annotation analyses of the Chromobacterium violaceum bacterium. A 388-bp fragment corresponding to a pqi gene promoter of C. violaceum was amplified using specific primers and cloned into a conjugative vector containing the Escherichia coli lacZ gene without a promoter. Assessments of the expression of the β-galactosidase enzyme were performed in the presence of menadione (MEN) and phenazine methosulfate (PMS) compounds at different final concentrations to evaluate the heterologous activation of the predicted promoter region of interest in C. violaceum induced by these substrates. Under these experimental conditions, the MEN reagent promoted highly significant increases in the expression of the β-galactosidase enzyme modulated by activating the promoter region of the pqi genes at all concentrations tested. On the other hand, significantly higher levels in the expression of the β-galactosidase enzyme were detected exclusively in the presence of the PMS reagent at a final concentration of 50 μg/mL. The findings described in the present study demonstrate that superoxide radical-generating compounds can activate a predicted promoter DNA motif for pqi genes of the C. violaceum bacterium in a dose-dependent manner.
منابع مشابه
Heterologous induction of a predicted promoter sequence for paraquat-inducible genes of Chromobacterium violaceum in response to paraquat compound.
aCentro de Ciências Agrárias, Universidade Federal do Vale do São Francisco – UNIVASF, Rodovia BR 407, Km 12, Projeto de Irrigação Nilo Coelho, CEP 56300-000, Petrolina, PE, Brazil bPontifícia Universidade Católica do Paraná – PUCPR, Rodovia BR 376, Km 14, Campus de Ciências Agrárias, Costeira, CEP 83010-500, São José dos Pinhais, PR, Brazil cLaboratório Nacional de Computação Científica – LNCC...
متن کاملTwo-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene.
Escherichia coli responds to the redox stress imposed by superoxide-generating agents such as paraquat by activating the synthesis of as many as 80 polypeptides. Expression of a key group of these inducible proteins is controlled at the transcriptional level by the soxRS locus (the soxRS regulon). A two-stage control system was hypothesized for soxRS, in which an intracellular redox signal woul...
متن کاملRegulation of the nfsA Gene in Escherichia coli by SoxS.
In Escherichia coli, the response to oxidative stress due to elevated levels of superoxide is mediated, in part, by the soxRS regulon. One member of the soxRS regulon, nfsA, encodes the major oxygen-insensitive nitroreductase in Escherichia coli which catalyzes the reduction of nitroaromatic and nitroheterocyclic compounds by NADPH. In this study we investigate the regulation of nfsA in respons...
متن کاملPhagocyte NADPH oxidase, but not inducible nitric oxide synthase, is essential for early control of Burkholderia cepacia and chromobacterium violaceum infection in mice.
Reactive oxygen and nitrogen intermediates have critical, partially overlapping roles in host defense against a variety of pathogens. Using mice deficient in generating phagocyte superoxide (p47(phox)(-/-)) and mice deficient in generating inducible nitric oxide synthase (iNOS(-/-)), we examined the roles of these reactive species in host defense against Burkholderia cepacia and Chromobacterium...
متن کاملAnalysis of the Organic Hydroperoxide Response of Chromobacterium violaceum Reveals That OhrR Is a Cys-Based Redox Sensor Regulated by Thioredoxin
Organic hydroperoxides are oxidants generated during bacterial-host interactions. Here, we demonstrate that the peroxidase OhrA and its negative regulator OhrR comprise a major pathway for sensing and detoxifying organic hydroperoxides in the opportunistic pathogen Chromobacterium violaceum. Initially, we found that an ohrA mutant was hypersensitive to organic hydroperoxides and that it display...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics and molecular research : GMR
دوره 14 3 شماره
صفحات -
تاریخ انتشار 2015